관리 메뉴

기억을 위한 기록들

<처음 배우는 딥러닝 챗봇> 리뷰 본문

이런저런 책들

<처음 배우는 딥러닝 챗봇> 리뷰

에드윈H 2022. 3. 30. 21:14

 

챗봇은 최근 스마트폰과 비대면 시대가 맞물리게 되면서 점점 더 부각되고 있는 기술 중 하나 같다.

 

 

" 전 세계적으로도 챗봇시장은 계속해서 확대되고 있으며, 2024년에는 94억달러 규모로 시장이 형성 될것..."
 - <처음 배우는 딥러닝 챗봇> 중 일부..

 

챗봇은 책에서도 채터(Chatter)와 로봇(Robot)의 합성어로 대화하는 로봇이라고 정의하고 있다.

 

해당 내용은 책의 "챕터1 - 챗봇 입문하기" 중에 나오고 있는 내용으로 챗봇에 대한 전반적인 개념 설명을 해주고 있다.

 

그리고 챗봇은 주로 파이썬으로 대부분 구축이 되고 있는데,

"챕터2 - 파이썬 시작하기"에서는 대한 간단한 설명과 파이썬에 대한 기본적인 개념을 설명 해주고 있다. 파이썬에 대한 깊은 이해을 하려면 이 챕터만으로 부족하고 별도의 책으로 공부를 더해보고 실습을 더 많이 해봐야하지만, 해당 챕터로 입문하기엔 나쁜점은 없는 것다.

 

챕터3 - 토크나이징

해당 챕터는 단어들을 토큰(token)이라고 부르고 토큰의 단위는 토크나이징 방버에 따라 달라질수 있지만 일반적으로 일정한 의미가 있는 가장 작은 정보 단위로 결정됩니다.

 

책에서는 한국어 토크나이징에 대한 라이브러리 KoNLPy(코엔엘파이)에 대해서도 설명해주고 있다. 그외에도 한국에서 만든 여러가지의 라이브러리들(Kkma/Komoran 등등)에 대한 설명들이 있어서 꽤나 신기했다.

챕터4-임베딩

임베딩이란 단어나 문장을 어떤 값들로 수치화해서 벡터 공간으로 표현하는 과정을 의미한다고 한다.

컴퓨터가 인식할 수 있는 단어들을 숫자값으로 만들어서 그에 대응하게 만들어주는것다. 이런 임베딩에대한 기법과 장단점등을 책에서는 설명해주고 있다. 

 

챕터5 - 텍스트 유사도 

임베딩으로 각 단어들의 벡터를 구하고 다음 벡터 간의 거리를 계산하는 방법으로 단어 간의 의미가 얼마나 유사한지 계산할수 있다고 한다. 임베딩은 즉 단어들을 묶어서 수치화했다면 그 묶인 단어들의 조합으로 문장을 만들게 될텐데 이런 문장들의 유사도를 계산할수 있어야한다고 한다.

 

 

이후에 챕터들에서는 실제로 챗봇엔진 만들기를 진행하게 된다.

 

챕터6 - 챗봇엔진에 대한 필요한 딥러닝모델

챕터7 - 챗봇 학습툴 만들기

챕터8 - 챗봇 엔진만들기

챕터9 - 챗봇 API 만들기

 

이후에는 기존에 서비스 되고 있는 카톡과 네이버 톡톡 챗봇을 만들어 보며 책이 마무리 된다.

챕터10 - 카톡 챗봇 만들기

챕터11 - 네이버톡톡 챗봇만들기

 

그외에 부록이 있다.

부록 A 개발환경 구축

부록 B AWS에서 챗봇 구동 환경 만들기

 

 

이렇게 전체적으로 보니

 

챕터1~5에서는 챗봇에 대한 개념설명과 파이썬에 대한 설명 그리고 챗봇에 필요한 기능에 대한 설명들을 해주며

 이후엔 실제적으로 간단한 자체 챗봇엔진을 만들며 책이 마무리가 된다.

 

나도 지금까지 파이썬에 대한 관심과 챗봇에 대한 호기심이 있었는데 깊이 알려고 한다면 더 많은 시간과 노력이 필요하겠지만, 간단하게 챗봇이 어떻게 동작하는가?에대한 호기심은 살짝 해결된거같다.

 

 

 

 

"한빛미디어 <나는 리뷰어다> 활동을 위해서 책을 제공받아 작성된 서평입니다."

 

 

http://www.yes24.com/Product/Goods/94462359

 

처음 배우는 딥러닝 챗봇 - YES24

비대면 시대를 이끄는 챗봇 기술, 한 권의 책으로 만나다!이 책은 챗봇 엔진부터 NLP, 딥러닝, REST API, 카카오톡 연동에 이르기까지 챗봇에 필요한 기술을 한 권으로 만나볼 수 있는 챗봇 개발 입

www.yes24.com